
The ClusteringSuite package

12th March 2014

The ClusteringSuite is the piece of code that implements all the cluster
analysis techniques developed at the Barcelona Supercomputing Center Tools
Team. Basically, it is composed by two main libraries, libClustering and libTrace-

Clustering, and a set of binaries that use these libraries to o�er the di�erent
features. All this collection of software follows an object-oriented design and is
implemented in C++, with limited features implemented in C.

1 Software engineering
In this section we present the a coarse-grain description of the software engi-
neering behind the ClusteringSuite package. This package represents the third
version of the software package that aggregates a set of features that became sta-
ble as the development of the thesis advanced.

The features of the package are divided in two main parts: �rst, a core cluster
analysis library, libClustering, that includes the abstraction of the information
containers and the clustering algorithms; second, the libTraceClustering that
o�ers the features of extracting the required information from application traces,
prepare the information to perform to use the libClustering and generate the
di�erent outputs. Both libraries o�er a clean façade class to access the di�erent
features they implement that is used by the di�erent binaries. In the following
points we detail the classes that compose each library and the interaction among
them.

1.1 libClustering
Figure 1 contains a basic UML class model of the libClustering. It contains the
four main classes required to perform a cluster analysis. First, a Point, the ab-
straction of n-dimensional point including basic operation such as the Euclidean
distance to another Point. A set of points is aggregated over a DataSet, useful

1

ClusterAlgorithm

DBSCAN gMeans CAPEK

DataSet

<<refers>>

Point

Partition

<<generates>>

<<uses>>

Figure 1: UML class model of the libClustering library

to manipulate data ranges or to build indexes to ease the access to each individ-
ual point. Next, the hierarchy where the top class is ClusteringAlgorithm acts
as an interface to the actual implementations of multiple algorithms. The Clus-
teringAlgorithm objects process a DataSet and generate a Partition, a class that
relates the Points in a DataSet to the cluster they belong. In this Figure we just
depict three of the possible cluster algorithms this library o�ers.

1.2 libTraceClustering
libTraceClustering is the library that includes all the logic required to extract
the information from an application trace (a Paraver trace or a Dimemas trace)
and then process it to execute a cluster analysis using the libClustering library.
As can be seen in the UML class model of this library, Figure 2, the interaction
between these two libraries relies on a hierarchy inheritance, where TraceDataSet
and CPUBurst are specializations of DataSet and Point respectively de�ned in the
libClustering library.

ClusteringDe�nition class contains the information to set up all the model.
First, it de�nes which of the cluster algorithms from the libClustering will be
used (and the possible values for its parameters). Second, it de�nes the di�erent
ClusteringParameter objects. Each ClusteringParameter represents one of the
dimensions that describe a Point (specialized as CPUBurst at this level) used by
the ClusteringAlgorithm to discover the di�erent clusters.

Using the ClusteringParameter’s, a DataExtractor object will read the con-
tents of a Trace �lling the TraceDataSet with the CPUBursts found.

Then the particular ClusteringAlgorithm is executed and creates the corre-
sponding Partition object (also part of the libClustering library). This Parti-
tion object will be used �rst by a ClusteringStatistics object to compute statistics
and by PlotManager (also de�ned by the ClusteringDe�nition object) to generate

2

DataSet

TraceDataSet

Point CPUBurst

ClusteringParameter ClusteringDefinition
<<defines>>

DataExtractor

Partition

ClusteringStatistics
Trace

<<uses>>

<<generates>>

TraceReconstructor

<<uses>>

<<generates>>

<<uses>>

<<uses>>

ClusteringAlgorithm
<<defines>>

<<refers>>

PlotManager
<<defines>>

<<uses>>

AggregativeCluster
RefinementClusterSequenceScore

<<uses>>

<<uses>>

<<uses>> <<generates>>

Figure 2: UML class model of the libTraceClustering library

output plots of the clusters found. Then TraceReconstructor will create an output
trace with the same information of the original and the information (events) to
identify to which cluster each CPU bursts belongs.

In case of using the Aggregative Cluster Re�nement algorithm, the library
behaves di�erently than using a regular cluster algorithm. Basically, it will make
use of DBSCAN (to clarify the drawing, in Figure 2 it is represented as it uses any
ClusteringAlgorithm) on each re�nement step as well as a ClusterSequenceScore
object to evaluate the quality of the intermediate clusters (the di�erent Parti-
tions). AggregativeClusterRe�nement produces a �nal Partition of the data, but
the library can keep track of intermediate ones to also produce intermediate
traces and plots useful to evaluate the hierarchical generation of the �nal clus-
ters.

2 Libraries and tools
The tools o�ered in the ClusteringSuite package are BurstClustering, Clustering-
DataExtractor and DBSCANParametersApproximation.

BurstClustering The main tool that includes the cluster analysis based on a

3

application trace. The user provides an XML �le (used by all three tools)
to con�gure the analysis (a ClusteringDe�nition class in the model) and a
trace �le. Using the libTraceClustering it processes the provided trace,
run the cluster algorithm (both the ones implemented in the libClusterig
or the Aggregative Cluster Re�nement) and generates the output trace and
the cluster statistics and plots.

ClusteringDataExtractor A tool that only o�ers the data extraction from the
input trace and the plot generation, but not the cluster analysis. It is useful
to performn preliminary observations about the data distribution so as to
adapt the parameters used by the cluster analysis, for example to �lter the
individuals.

DBSCANParametersApproximation This tool is useful when using the DBSCAN
algorithm to help the user to tune the algorithm parameters.

3 ClusteringSuite tools usage
This section is intended as a brief manual of regular use of the three tools in-
cluded in the ClusteringSuite software1. As mentioned before, the tools o�ered
in the software package use an input trace where the information is extracted.
Even it could be a Paraver or Dimemas trace, it almost all cases, the input trace is
a Paraver trace. The second input �le these tools require is the con�guration �le
XML. This �le is key to de�ne which the parameters of the clustering process.

In brief, the cluster analysis process its composed by 6 steps. First four steps
are required to generate the XML con�guration �le, while the last two are the
execution of the BurstClustering tool itself and the observation and analysis of
the results.

1. Select of the clustering/extrapolation parameters.

2. De�ne the �lters and normalization applied to the input data

3. Select the cluster algorithm and its parameters

4. De�ne the output plots

5. Execute the cluster analysis

6. Observe the di�erent outputs
1All the guidelines presented in this section are applicable to the ClusteringSuite v2.XX

4

The actual de�nition of the di�erent records in the XML �le are described
in the following section (4), while this one include the guidelines to detect the
information it will contain.

1. Select the clustering parameters

The �rst decision to take when performing a cluster analysis is which of the
data present in the input trace will be used to describe each CPU burst, in the
ClusteringSuite terminology, we call them simply the parameters.

Using the Paraver vocabulary, a CPU burst is expressed in a trace as a State
Record of value 1 (Running State). The parameters available to characterize a CPU
burst are those events that appear at the end time of the given Running State. As
a Paraver event is a pair event/value, in the XML �le we use the event type to
indicate events we whose values will be stored in the di�erent bursts. We can
also use Running State duration (di�erence between end time and begin time) as
a CPU burst parameter.

In the XML we will express those parameters that will be used by the cluster
algorithm, the clustering parameters, and those that will be used in the extrap-
olation process, the extrapolation parameters. The parameters can be de�ned as
single event reads (single events) or combinations of pair of events (mixed events).
In case we use the CPU burst duration, it will always be used as a clustering pa-
rameter.

It could be obvious, but to de�ne the di�erent parameters it is essential to
know �rst which ones we want to use and which are the event type codi�cation
present in the trace. To do that we need to go through to the Paraver Con-
�gutarion File (.pcf �le generated by Extrae) and check which events appear in
the trace and their event type encoding. Almost in all analyses we use the Per-
formance Hardware Counters events, being Completed Instructions and IPC the
usual metrics combinations used by the cluster algorithm.

2. De�ne the �lters and normalizations

Once knowing which are the clustering parameters, we have to decide the possi-
ble �lters we want to apply. The �lters prevent the cluster algorithm of analysing
CPU bursts that can bias the result or do not add any valuable information. We
found two di�erent �lters: a duration �lter to discard those burst whose dura-
tion is shorter than a given value, and a range �lter that can be de�ned to each
parameter and eliminates those bursts than are out of the boundaries.

To tune the duration �lter we use the stats tools provided by the CEPBA-
Tools package. Using the -bursts_histo parameter this tool computes a plot as
the one presented in Figure 3 for a given Paraver trace. This plot is an histogram

5

 0×100

 1×105

 2×105

 3×105

 4×105

 5×105

 6×105

 7×105

 8×105

1 µs
10 µs

100 µs

1 m
s

10 m
s

100 m
s

1s 10 s

 0

 20

 40

 60

 80

100

N
u
m

b
er

 o
f

b
u
rs

ts

%
 o

f
co

m
p
u
ta

ti
o
n
 t

im
e

Number of bursts
% of computing time

Figure 3: Bursts histogram produced by stats tool

where the x axis is the duration of the CPU bursts and quanti�es both the aggre-
gated time of the CPU bursts, the green bars, and the number of bursts, the red
line. Observing this plot we can select the duration that eliminates de maximum
number of bursts (red line at left of the select duration), while maintaining a high
value of aggregated time (green bars at right of the selected point). For example,
in the Figure 3, a reasonable duration �lter will be 10 miliseconds.

With respect to the normalizations, we provide the possibility of applying
�rst a logarithmic normalization, useful when the parameter range is wide and
can bias the results of the cluster analysis. The logarithmic normalization can
be applied to each parameter independently. The second normalization is a pure
range normalization to set the parameter values in range [0, 1], following the
formula range (∀ai ∈ A, ai ← (ai − min(A))/(max(A) − min(A))). When
using the range normalization, it will be applied to each parameter used, so as
to guarantee that all of them have the same weight in the analysis. If we to add
more weight one of the parameters used in the cluster analysis, we can apply a
multiplicative factor.

To clarify how the di�erent normalizations and �lters work, this is the order
as they are applied: when a CPU burst is read, its duration is checked and then
the di�erent parameters that have range �lters de�ned; to those bursts that pass
the �lters its performed the logarithmic normalization of each parameter that
requires it and afterwards the range normalization. Finally, the scaling factor is

6

Cluster Algorithm Name Parameters

DBSCAN epsilon, min_points

GMEANS critical_value, max_clusters

CAPEK1 k

MUSTER_PAM1 max_clusters

MUSTER_XCLARA1 max_clusters

1 libClustering includes a common interface to this algo-
rithms o�ered by the MUSTER library (http://tgamblin.
github.com/muster/main.html

Table 1: Cluster algorithms included in the libClustering and their parameters

applied.

3. Select the output plots

We can combine the parameters de�ned previous to generate GNUplot scripts
of 2D and 3D scatter-plots. The plots can print both the normalized data or the
raw data (before normalizations). The user can tune tune the ranges to print and
also the axis-labels of the plots. In addition, users can let the library to produce
all 2D plots obtained combining all metrics de�ned.

Once having the parameters, �lters and plots, we can run the application
ClusteringDataExtractor to extract the data and produce the plots described
before runing the cluster algorithm. The resulting plots will show all the data
available, distinguishing between the duration �ltered bursts, the range �ltered
bursts and the ones that will take part in the cluster analyses. These plots are an
useful aid to �ne tune the parameter �lters and normalizations.

4. Select the cluster algorithm

Even though the Aggregative Cluster Re�nement and DBSCAN are the two basic
algorithms o�ered by the ClusteringSuite package, there is a few more cluster-
ing algorithms o�ered to the user. Table 1 contains the list of these algorithms
and their parameters. It is interesting to note that the Aggregative Cluster Re-
�nement is the only algorithm that does not require any parameter and it not
have to be expressed in the XML con�guration �le.

For further information about the di�erent algorithms included in the pack-
age, we point to the following papers: [1] for DBSCAN algorithm, [2] for GMEANS

7

http://tgamblin.github.com/muster/main.html
http://tgamblin.github.com/muster/main.html

and [3] for CAPEK, PAM and XCLARA.
In case of DBSCAN we provide the application DBSCANParametersApproximation

to help the paremeter selection, according to the technique described in [1].

5. Execute the cluster analysis

Once de�ned the di�erent elements necessary to perform the analysis, we need
to execute the BurstClustering tool. The di�erent parameters of this tool and
a short description of them are listed in Table 2. Basically, to perform a regular
analysis using the cluster algorithm de�ned in the XML �le we need to execute
the command:

BurstClustering -d <clustering_definition.xml> -i <input_trace> -o <output_trace>

The tool will process the information provided in the con�guration �le, ex-
tract the data from the input trace, execute the cluster algorithm and then gen-
erate the required output plots, extrapolation �les and the output trace. These
�les will be explained in the further step.

In case we want to execute the Aggregative Cluster Re�nement algorithm,
the command varies slightly:

BurstClustering -d <clustering_def.xml> -ra[p] -i <input_trace> -o <output_trace>

By adding the -ra parameter, the tool discards the algorithm indicated in the
clustering de�nition XML �le and then applies this di�erent algorithm. In case
we use the parameter -rap, the tool will produce, apart from the regular outputs,
the traces and plots of intermediate steps of the Aggregative Cluster Re�nement
algorithm.

6. BurstClustering tool outputs

The BurstClustering o�ers three main outputs: scatter-plots of the di�erent
metrics, a cluster statistics �le (including the extrapolation) and a reconstructed
Paraver trace. In addition, it also generates the re�nement tree, when using the
Aggregative Cluster Re�nement. Optionally, it can produce the a �le with the se-
quence alignment and a �le containing the Cluster Sequence Score values. Here
we will describe brie�y all of them.

The scatter-plots are simply GNUplot scripts that can be load using this
plotting tool. As seen in previous steps, they can be 2 or 3 dimensional com-
binations of di�erent metrics used to characterize the CPU bursts. In any case,
the points in the scatter plots are coloured to distinguish the di�erent clusters
found. These plots are useful to observe, qualitatively, variations in the clusters

8

Parameter Description

Required parameters

-d <clustering_definition.xml> Clustering de�nition XML to be
used

-i <input_trace.prv> Input (Paraver) trace to be used
-o <output_trace.prv> Output (Paraver) trace with cluster

information added
Optional parameters

-h Show help message and exit
-s Performs a silent execution, with-

out informative messages
-m <number_of_samples> Performs a cluster analysis using

the number of burst indicated and
classifying the rest

-a[f] Generates an output �le with the
aligned sequences (in FASTA for-
mat when using ’-af’)

-ra[p] Executes the Aggregative Cluster
Re�nement instead of the cluster
algorithm indicated in the XML.
When using ’-rap’ generates plots
and outputs from intermediate
steps

-t Print accurate timings (in
µseconds) of di�erent algorithm
parts

-e EvtType1, EvtType2,... Changes the Paraver trace pro-
cessing, to capture information by
the events de�ned instead of CPU
bursts

Table 2: BurstClustering tool parameters

9

(a) Instructions vs. IPC (b) Stores vs. Loads

(c) Main memory accesses vs. L2 data cache
acessess

(d) Integer instructions vs. Floating point in-
structions

Figure 4: Output plots produced by BurstClustering tool combining di�erent
metrics

with respect to the metrics used. In Figure 4 we show 4 di�erent plots combining
8 di�erent hardware counters. First plot, 4a, show the metrics used by the cluster
algorithm. In the rest of combinations we can observe that the clusters represent
clear isolated clouds, with a minor exception of the plot comparing Main Mem-
ory Accesses vs. L2 Data Cache Accesses, 4c, where Cluster 4 (in red) appear in
two di�erent clouds.

The plot scripts are named using the output trace pre�x plus a trailing string
expressing the combination of metrics used. They have the extension .gnuplot.
All of them use a �le ended in .DATA.csv that contain on each line the di�erent
parameters described in the XML �le plus the cluster identi�er assigned for each
CPU burst analysed.

The clustering statistics �le is a CSV �le that contains the number of in-
dividuals, the aggregated duration and the average duration per CPU burst, and
the average values of extrapolation parameters de�ned in XML, for each cluster

10

found. This �le is really useful to analysed quantitatively the behaviour of the
di�erent clusters found. The clusters statistics �le is named using the pre�x of
the input trace, but ending in .clusters_info.csv.

Next output that is always produced is the output trace. Basically, this is ex-
actly the same input trace where all the CPU burst have been surrounded using
a certain events to identify them. Thanks to these events, we can take advantage
of the vast analysis power of Paraver and Dimemas to perform further analy-
ses and correlate the clusters with all the information present on the trace. For
example, we can observe the time-line distribution of the di�erent computation
regions detected. An example of Paraver time-line and its corresponding dura-
tion pro�le can be seen in Figure 5. We provide a set of Paraver con�guration
�les with pre-de�ned views and histograms related to cluster events.

In case we executed the Aggregative Cluster Re�nement algorithm, the tool
will also produce a re�nement tree �le. This �le has the same pre�x as the
output trace and the extension TREE.dot. It is a text �le that describes the re-
�nement tree using the DOT language. To visualize it we require the GraphViz2

software package. We also recommend using of the interactive tool xdot3 to nav-
igate through the re�nement tree output. An example of a re�nement tree can
be seen in Figure 6.

Finally, using the parameter -a, the tool will produce a CSV �le contain-
ing the sequences obtained after applying the Cluster Sequence Score. This �le,
named as the output trace with the extension .seq, contains the sequence of the
cluster identi�ers (numbers) and gaps (marked as hyphens) introduced by the
alignment algorithm for each task and thread present on the input trace. If use
the parameter -af, the �le will be generated in the FASTA format, transforming
the �rst 21 clusters in an amino-acid identi�er. The FASTA �le can be load in
any alignment software, such as ClustalX4 for its visualization. In Figure 7 we
can see a ClustalX window with a set of aligned sequences.

If we use any of these two last parameters, the tool will also produce a �le
with the extension SCORES.csv, that contains the numerical results of the Cluster
Sequence Score.

When using the Aggregative Cluster Re�nement with the parameter -rap

the tool will produce the plots, traces, re�nement trees, sequence �les and score
�les for each re�nement step. The intermediate statistics �les will not be gener-
ated and these intermediate trace �les will only contain cluster events, to check
the intermediate cluster distribution, but not to correlate them with other infor-
mation. The intermediate �les will have an inter-�x STEPX in their �le name, to

2http://www.graphviz.org/
3http://code.google.com/p/jrfonseca/wiki/XDot
4http://www.clustal.org/

11

http://www.graphviz.org/
http://code.google.com/p/jrfonseca/wiki/XDot
http://www.clustal.org/

(a) Time-line distribution of discovered clusters

(b) Duration histogram of the clusters per application task

Figure 5: A Paraver time-line and pro�le showing information related to a cluster
analysis

12

S
T

E
P

 1
 E

p
s

=
 0

.0
0

1
8

5
6

9
6

S
T

E
P

 2
 E

p
s

=
 0

.0
0

2
0

4
3

4

S
T

E
P

 3
 E

p
s

=
 0

.0
0

2
3

0
2

2
2

S
T

E
P

 4
 E

p
s

=
 0

.0
0

3
2

0
6

7

S
T

E
P

 5
 E

p
s

=
 0

.0
0

3
2

8
4

3

S
T

E
P

 6
 E

p
s

=
 0

.0
0

3
9

5
9

0
2

S
T

E
P

 7
 E

p
s

=
 0

.0
0

4
6

9
8

9
5

N
o
is

e

 S
co

re
 =

 3
1

.2
5

%

N
o
is

e

 S
co

re
 =

 3
1

.2
5

%

C
lu

st
e
r

1

 S
co

re
 =

 1
0

0
%

C
lu

st
e
r

2

 S
co

re
 =

 1
0

0
%

C
lu

st
e
r

3

 S
co

re
 =

 1
0

0
%

C
lu

st
e
r

4

 S
co

re
 =

 1
0

0
%

C
lu

st
e
r

5

 S
co

re
 =

 1
0

0
%

C
lu

st
e
r

6

 S
co

re
 =

 1
0

0
%

C
lu

st
e
r

7

 S
co

re
 =

 1
0

0
%

C
lu

st
e
r

8

 S
co

re
 =

7

5
%

C
lu

st
e
r

8

 S
co

re
 =

7

5
%

C
lu

st
e
r

9

 S
co

re
 =

5

0
%

C
lu

st
e
r

9

 S
co

re
 =

 8
7

.5
%

C
lu

st
e
r

1
0

 S

co
re

 =
 3

7
.5

%
C

lu
st

e
r

1
1

 S

co
re

 =
 3

7
.5

%

C
lu

st
e
r

1
1

 S

co
re

 =
 3

7
.5

%

C
lu

st
e
r

1
2

 S

co
re

 =
 3

7
.5

%

C
lu

st
e
r

1
2

 S

co
re

 =
 3

7
.5

%

N
o
is

e

 S
co

re
 =

2

5
%

C
lu

st
e
r

1
3

 S

co
re

 =

5
0

%
C

lu
st

e
r

9

 S
co

re
 =

 8
7

.5
%

C
lu

st
e
r

8

 S
co

re
 =

7

5
%

C
lu

st
e
r

1
1

 S

co
re

 =

7
5

%

N
o
is

e

 S
co

re
 =

2

5
%

C
lu

st
e
r

9

 S
co

re
 =

 1
0

0
%

C
lu

st
e
r

1
1

 S

co
re

 =
 8

7
.5

%
C

lu
st

e
r

8

 S
co

re
 =

7

5
%

C
lu

st
e
r

1
3

 S

co
re

 =

5
0

%

N
o
is

e

 S
co

re
 =

2

5
%

C
lu

st
e
r

8

 S
co

re
 =

7

5
%

C
lu

st
e
r

1
1

 S

co
re

 =
 8

7
.5

%
C

lu
st

e
r

1
3

 S

co
re

 =

5
0

%

N
o
is

e

 S
co

re
 =

2

5
%

C
lu

st
e
r

8

 S
co

re
 =

 1
0

0
%

C
lu

st
e
r

1
1

 S

co
re

 =
 8

7
.5

%

C
lu

st
e
r

1
1

 S

co
re

 =
 1

0
0

%

Fi
gu

re
6:

Ex
am

pl
e

of
a

re
�n

em
en

tt
re

e
pr

od
uc

ed
by

B
u
r
s
t
C
l
u
s
t
e
r
i
n
g

to
ol

13

Figure 7: ClustalX sequence alignment window

distinguish at which step (iteration) of re�nement were produced.
Finally, it is interesting to note that we guarantee the colour coherence in

all those outputs generated by the BurstClustering that use colour information
to distinguish the cluster identi�ers. In case of ClustalX we provide a modi�ed
version of software package with the required amino-acid colouring.

4 Creating the clustering de�nition XML
In brief, the clustering de�nition XML �le contains the description of four el-
ements of the clustering process: the parameters associated to each CPU burst
in the trace used by cluster analysis and the extrapolation process; the �ltering
ranges and normalizations applied to this data; the cluster algorithm to be used;
and �nally, the description of the di�erent output plots, generated as GNUplot
scripts. We can see how these di�erent parts are distributed in the XML �le in
Figure 8.

Following the current description of the �le it could be easily generated using
a regular text editor or a XML editor.

4.0.1 Parameter selection

There are two ways to de�ne how the parameters are read from a Paraver trace.
First, the values of individual events situated at the end of the Running State,
using single_event nodes. Second, combining the values of two di�erent events
with a basic mathematical operation, using mixed_events nodes.

14

<clustering_definition use_duration="no" apply_log="yes" normalize_data="yes"
duration_filter="10000" threshold_filter="0">

 <clustering_algorithm name="xxx">
 <!-- specific cluster algorithm parameters -->
 </clustering_algorithm>

 <clustering_parameters>
 <!-- 'single_event'/'mixed_events' nodes defining the CPU bursts
 parameters (dimensions) to be used by the cluster algorithm -->
 </clustering_parameters>

 <extrapolation_parameters>
 <!-- 'single_event'/'mixed_events' nodes defining the CPU burst
 parameters (dimensions) to be used in the data extrapolation
 process -->
 </extrapolation_parameters>

 <output_plots all_plots="no">
 <!-- 'plot_definition' nodes defining 2D/3D plots combining the
 'clustering_parameters'/'extrapolation_parameters' --
 </output_plots>

</clustering_definition>

Definition of the output plots combining the CPU parameters

CPU bursts parameters to be extrapolated

CPU bursts parameters to be used by cluster algorithm

Cluster algorithm parametrization

End tag

Figure 8: Clustering de�nition XML �le structure

A single_event node, see Figure 9a, contains �rst two attributes: apply_log
that indicates if a logarithmic normalization will be applied to its values; the name
parameter is the label the will be used in the di�erent output �le. The inner node
event_type is mandatory, to de�ne the event type that appears in the Paraver
trace. Optional nodes range_min and range_max are used to �lter the CPU burst
outside these boundaries. Finally, optional node factor is a multiplicative value
so as to weight the parameter value.

A mixed_events node, see Figure 9b, is pretty similar to the previous one,
but includes two mandatory internal nodes event_type_a and event_type_b, to
de�ne the two types of events involved, and the attribute operation to de�ne
the mathematical operation applied to the values read. Possible operations are
+, -, * and /. The operation is applied to the values of the two events de�ned,
before the logarithmic normalization.

To de�ne the CPU bursts parameters that will be used by the cluster algo-
rithm, they have to be placed below the clustering_parameters node, see Fig-
ure 8. To de�ne those that will be used to characterize the resulting clusters
(as averages in the .clusters_info.csv �le), we have to place them below the
extrapolation_parameters node.

If we want to use the duration of the CPU bursts as a parameter, we need to set

15

<single_event apply_log="yes" name="PM_INST_CMPL">
 <event_type>42001090</event_type>
 <range_min>1e6</range_min>
 <range_max>1e8</range_max>
 <factor>1.0</factor>
</single_event>

(a) single_event node structure

<mixed_events apply_log="yes" name="IPC" operation="/">
 <event_type_a>42001090</event_type_a>
 <event_type_b>42001008</event_type_b>
 <range_max>3</range_max>
 <factor>1.0</factor>
</mixed_events>

(b) mixed_events node structure

Figure 9: Nodes to de�ne the parameters extracted from a trace

to yes the attribute use_duration present in the root node (clustering_definition).

4.0.2 Filtering and normalization

The �ltering and normalization is expressed at two points of the XML �le. We
have seen that the parameter de�nition nodes include both a range �ltering and
also a logarithmic normalization. The �ltering information included in the ex-
trapolation parameters is not taken into account.

The second point is the root node. In this node we �nd di�erent attributes,
see Figure 8 regarding �lters and normalizations. First one is apply_log, that
indicates if logarithmic normalization will be applied to the burst duration, if
used. Next one is normalize_data, that indicates if a �nal range normalization
will be applied to the values of all parameters (independently). Next we �nd
the duration_filter, expressed in µs, to discard those burst with less duration
than the indicated. Finally, the threshold_filter is a percentage to discard all
the clusters found whose aggregated duration represents less percentage of the
total clusters duration than the indicated.

4.0.3 Output plots

Once de�ned the parameters used to characterize the CPU bursts, below the
output_plots node we can de�ne the output plots combining the di�erent met-
rics.

If we set the attribute all_plots of this main node to yes, the libTrace-

Clustering library will generate all possible 2D plots combining the parame-
ters de�ned (clustering parameters and extrapolation parameters). If we want to

16

<plot_definition raw_metrics="yes">
 <x_metric title="IPC" min="0.1" max="2">IPC</x_metric>
 <y_metric title="Instr. Completed" min="4e7" max="5e7">PAPI_TOT_INS</y_metric>
 <z_metric title="Memory Instructions">Memory_Instructions</z_metric>
</plot_definition>

Figure 10: plot_definition node of the clustering de�ntion XML

manually de�ne the combinations we can use the plot_definition structure,
see Figure 10.

What we �nd �rst in the plot_definition node is the attribute raw_metrics.
In case we applied normalization to the clustering parameters setting this at-
tribute to “yes” indicates that the resulting plot will use the raw values of the
parameters. Then we �nd three kind of nodes [x|y|z]_metric. Each of these
nodes has a mandatory attribute title that will be used as the plot label for the
corresponding axis. They have two optional attributes max and min to de�ne the
axis range. Finally, the content of each of these nodes must be the name attribute
of any of the parameters de�ned previously (clustering parameter of extrapola-
tion parameter). In case we want to use the duration, as it is de�ned di�erently
from regular parameters, it has to be referenced simply using the text Duration.

We can combine up to three metrics to create a 3 dimensional scatter-plot,
where the individuals will be distinguished in series according to the cluster iden-
ti�er assigned. The same is applicable when using just two metrics (x and y). If
we just de�ne a single metric (x metric), the resulting plot will be a 2 dimensional
plot using the cluster identi�er as y axis.

References
[1] M. Ester, Hans P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise. In Evangelos
Simoudis, Jiawei Han, and Usama Fayyad, editors, KDD96: Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining,
pages 226–231, Portland, Oregon, 1996. AAAI Press.

[2] Aislan Gomide Foina, Rosa M. Badia, and Javier Ramirez Fernandez. G-
Means Improved for Cell BE Environment. In Facing the Multicore-Challenge,
pages 54–65, 2010.

[3] Todd Gamblin, Bronis R. de Supinski, Martin Schulz, Rob Fowler, and
Daniel A. Reed. Clustering Performance Data E�ciently at Massive Scales. In
ICS ’10: Proceedings of the 24th International Conference on Supercomputing,
pages 243–252, Tsukuba, Japan, 2010. ACM.

17

18

	1 Software engineering
	1.1 libClustering
	1.2 libTraceClustering

	2 Libraries and tools
	3 ClusteringSuite tools usage
	4 Creating the clustering definition XML
	4.0.1 Parameter selection
	4.0.2 Filtering and normalization
	4.0.3 Output plots

	Bibliography

